

(page intentionally left blank)

2

Contents
1 Introduction 4

2 Getting started 4

3 Continuing after starting 8
3.1 Words . 8

3.1.1 Word types . 8
3.2 Arithmetic . 9
3.3 Logic . 9
3.4 Control flow . 10
3.5 Comments . 10
3.6 Functions . 11
3.7 Lists . 11

4 Standard Library 12

5 Modules 12
5.1 Minimal runtime . 12

6 Runtime 12

7 Reference 13
7.1 Keywords . 13
7.2 Functions . 15
7.3 Bytecode . 15

3

LIGMAScript
The Programming Language

This book introduces the LIGMAScript programming language.

Intended audience
Anyone with a basic understanding of modern digital computer programming.

1 Introduction
LIGMAScript is a high-level general-purpose programming language for digital
computers.

The LIGMAScript contains only a handful of constructs, making the time spent
learning of the language and writing an implementation extremely short.

The language is intended to be extremely portable and embeddable, it is without
any built-in system calls or any similar contraptions.

In order to achieve these goals, the LIGMAScript language is intended to be
compiled to byte-code and run in a virtual-machine.

There currently exists a single implementation of both a LIGMAScript byte-code
compiler and a LIGMAScript byte-code virtual-machine. It is implemented in
C++98.

2 Getting started
The only way to learn a new programming language is by writing programs in it.
The first program to write is the same for all languages:

"hello, world" print

4

The syntax of the language consists of words and brackets. That is all that is
necessary. In this program “hello, world” is a word-literal and print is a word-
function. When the program gets executed, each word in it also gets executed. As
a word-literal, “hello, world” is executed by pushing its value unto the value stack.
The print word, as it is a word-function, gets executed by executing its instructions,
i.e. taking the value on the top of the stack and printing it to the console.

There are also word-values with names. These are, what are called, variables in
other languages. Let’s take the variable declaration from the C language:

x = 420 + 69;

The C language takes the value of the number 420 and the number 69, computes
their sum and them stores it in the variable x. In LIGMAScript the equivalent is
this:

x 420 69 + set

The LIGMAScript pushes the word x unto the stack. It then pushes the word-literal
420 and the word-literal 69 unto the stack. After that it takes the top two words
on the stack, that is, word-literals 420 and 69 and computes their sum and pushes
the sum unto the stack. Finally the remaining two values on the stack get taken off
of it and the value of the upper word gets copied into the lower value, that is, the
integer 489 gets stored in the word x.

The LIGMAScript stack is a special memory location in the LIGMAScript virtual-
machine, similar to the registers of a conventional processor. Unlike conventional
processors, in the case of LIGMAScript, the stack stores references to words, not
the words themselves. The contents of the stack can be printed at any time by
using the .s word-function.

For example, to display the contents of the stack during the computation in the
previous example you could use:

420 69 .s + .s

This would print the stack once after the integer 420 and 69 are pushed unto the
stack, and again, after the computation of their sum:

[420 | INT] [69 | INT]

[489 | INT]

We can also store multiple number values in a single word by using vectors:

5

(vec 1 2 3)

All regular arithmetic operations can also be used on these values:

(vec 1 2 3) 420 * print

This will output the computed value to the console:

(420, 840, 1260)

It is only allowed to perform an arimthetic operation on a vector if the second value
is either a single value or a vector of the same size, like this:

(vec 420 420 420) (vec 69 69 69) +

Which will compute to value (489, 489, 489).

In case it is needed to store multiple values that are not numbers, or need to
frequently change the size of, you can use lists:

(list 420 69 "very nice")

It is even possible to store lists inside of lists:

(list (list 420 69) "very nice")

Some word-functions, such as print are implemented in the LIGMAScript virtual
machine as a bytecode instruction, but we can also create our own word-functions
through LIGMAScript code:

(lambda "hello, world" print)

This statement will push the word-function to the stack. If we assign it to a word,
we can execute it like any other word:

hello-world (lambda "hello, world" print) set

hello-world

This generates the same output as the first example in this book.

LIGMAScript does not support archaic concepts like loops, but is possible to
divert the control flow of the program to the beginning of the function by using
the ”repeat” key-word:

(lambda "hello, world" print repeat)

6

Do not run this function. It will cause your computer to catch on fire and explode.
Instead, it is needed to add a stopping condition to the function:

7

hello-worlds (lambda

(declare hello-loop)

hello-loop (lambda

dup 10 > if (; check for stopping

return ; if is time to stop, stop

) else (; if there is no time to stop

1 + ; increase stopping counter

)

"hello, world" print cr ; print some text

repeat ; start again

) set

0 hello-loop ; initialize stopping value and loop

) set

3 Continuing after starting

3.1 Words
As with most programming languages, there are restrictions on the names of words.
LIGMAScript words cannot begin with the following symbols:

() [] * / + - 0 1 2 3 4 5 6 7 8 9 ‘ " . > < = !

Also these names cannot be the names of other words or built-in words.

3.1.1 Word types

The LIGMAScript language defines only these word types:

ATOM

INTEGER

FLOATING-POINT

STRING

FUNCTION

LIST-SEGMENT

There would be no need for more types, but since language must co-operate with

8

the C++98 language, there are more types:

INT8

INT16

INT32

INT64

FLOAT32

FLOAT64

CSTRING

CFUNCTION

These types can only be inserted into the LIGMAScript virtual machine from
C++98 code, however their usage in the LIGMAScript code is the same as their
respective LIGMAScript types. The vector types of numbers are simply the values
being repeated, as in arrays of other languages.

There is no need to declare the global words, the LIGMAScript virtual-machine
will declare them when the code is loaded for execution. However, in order to
distinguish global words from function-local words, it is necessary to declare the
local words like this:

(declare word1 word2 word3)

This declaration should occur only at the beginning of a function. It can be done
anywhere else, but it will cause memory leaks, so it is not recommended to do so.

3.2 Arithmetic
There are built-in arithmetic operations in the LIGMAScript:

+ - / * floor

The floor operation converts a number to a number that is not a FLOATING-
POINT. Other operations are defined in the LIGMAScript Standard Library.

3.3 Logic
There are built-in arithmetic comparisons:

> >= < <=

These can only be used on number types. Non-arithmetic comparisons:

9

== != is

These can also be used on atom, string and list types. The == and != compare
the values of the words, the is operator compares whether the words are the same
word.

All of these word-functions take their arguments and produce an atom true or false.
These atoms can then be further used with logical operators:

and or not

3.4 Control flow
LIGMAScript supports the if/if-else statements common to other languages:

if (do-something)

if (do-something) else (do-other-thing)

When the control reaches the if key-word, a word from the top of the stack will
be removed. If this word is the atom true, then control flow will step into the
subsequent block, otherwise it will continue after it, or if an else key-word is
present, step into the block subsequent to it.

Also is the possibility to either step out of a function with return or go back to the
beginning of a function with repeat:

(lambda do-something if (return) else (repeat))

3.5 Comments
In LIGMAScript the comments are preceded by the ; character. Everything after
the character until the next new line, will be ignored by the compiler. For an
example:

420 69 + print ; this prints the sum of 420 and 69

"very nice" ; this prints very nice

when executed will output 489 very nice to the console.

10

3.6 Functions
Functions in LIGMAScript are simply words that as their value either have a
LIGMAScript or a C++98 function.

3.7 Lists
Lists in LIGMAScript are stored in the well-know linked-list manner. If we
evaluate

(list 1 2 3)

we will get the first link of the list on our stack. We can retrieve its value with
data:

(list 1 2 3) data

This evaluates to the number value 1. We can retrieve the next segment with next:

(list 1 2 3) next

This evaluates to the second segment of the list. We can then retrieve its value as
well,

(list 1 2 3) next data

will evaluate to the number value 2. If we use next to reach the end of the list,

(list 1 2 3) next next next

we will get the atom nil on our stack. You can use

(list 1) next nil ==

to test for this value.

Here’s a small function that will take a linked list on the stack and repeat until it
prints all of its values out:

(lambda

dup data print cr

dup next nil ==

if (

drop return

) else (

11

repeat

)

)

4 Standard Library
// TODO

5 Modules
LIGMAScript modules are collections of additional C++98 functions that can be
added to the LIGMAScript virtual-machine.

5.1 Minimal runtime
The minimal runtime for implements a single function “exit” which can be used
to terminate the runtime’s REPL loop. It takes no parameters and returns nothing.

// TODO

6 Runtime
LIGMAScript is designed to be an embeddable language, and as such is embed-
dable into any kind of runtime that has the ability to call C++98 functions.

// TODO

12

7 Reference

7.1 Keywords
Keyword Description
+ Arithmetic addition of two numbers.
- Arithmetic subtraction of two numbers.
* Arithmetic multiplication of two numbers.
/ Arithmetic division of two numbers.
.. Prints metadata of a word.
== Value equality comparision of two values. Can be

used on atoms, strings and numbers.
!= Value inequality comparision of two values. Can be

used on atoms, strings and numbers.
> Arithmetic greater than comparision of two values.
< Arithmetic lesser than comparision of two values.
>= Arithmetic greater than or equal comparision of two

values.
<= Arithmetic lesser than of equal comparision of two

values.
and Logical conjunction.
cr Prints a new line character.
data Extracts the data reference from a list-link word.
.s Stack print. Prints the stack. Can be used anywhere.
declare Declaration block type declaration. Every symbol

inside of this block will be considered by the compiler
to be a word local to a function. Can only be used
inside of functions.

do Executes a function from the stack.
dup Duplicates the word on the top of the stack.
drop Discards the word on the top of the stack.
else Defines an else block. Subsequent to the if block and

preceding the else block in an if/else statement.
explode Sets the machine on fire and explodes.

13

Keyword Description
fail Atom. Returned by functions that can fail and used to

indicate failure of some kind.
false Atom. Returned by logic functions and used to indi-

cate a false logic value.
floor Converts a floating-point word to an integer word, or

leaves it as is if it’s an integer.
if Defines an if block. Preceding the if block in an if/else

statement.
is Compares two references, i.e. if they are a reference

to the same word.
lambda Function block type declaration. All code inside of

this block will be considered by the compiler to be a
part of a function.

len Measures the length of vectors.
list List block type declaration. Every word inside of this

block will be considered by the compiler to be a word
that is to be appended to a list.

type Measures the type of a word.
true Atom. Returned by logic functions and used to indi-

cate a true logic value.
maybe Atom. Returned by logic functions and used to indi-

cate a third logic value.
mod Arithmetic remainder of a division of two numbers.
next Extracts the next reference from a list-link word.
nil Atom. Used so signify a non-existing word.
not Logical negation.
or Logical disjunction.
ok Atom. Returned by functions that can succeed and

used to indicate success of some kind.
over Duplicates the word second word from the top of the

stack.
print Prints a word’s value.

14

Keyword Description
set Sets a word’s value to a value from an other word.
setnext Sets the the next reference from a list-link word.
setdata Sets the the data reference from a list-link word.
swap Swaps two words on the top of the stack.
repeat Repeats a function. Can be used only in a function.
return Returns from a function. Can be used only in a func-

tion.
rot Rotates three words on the top of the stack, counter-

clock-wise.
vec Vector block type declaration. Every word inside of

this block will be considered by the compiler to be a
value in a vector.

7.2 Functions
// TODO

7.3 Bytecode
// TODO

15

